S Covariant derivatives (do Carmo $$4.4)$

Given a surface $S \subseteq \mathbb{R}^3$, recall that a vector field on S

$$
X: S \longrightarrow R^3 \qquad (smooth)
$$

- . is tangential if $X_p \in T_p S$ $\forall p \in S$
- . is normal if $X_P \in (T_P S)^+ \forall p \in S$

$$
\frac{\text{Def}^{\underline{u}}}{\mathcal{X}}(S) := \left\{ \text{tangential vector fields on } S \right\}
$$

$$
\mathcal{X}^{L}(S) := \left\{ \text{normal vector fields on } S \right\}
$$

 $Q:$ How to differentiate vector fields in $\mathfrak{X}(S)$. A: Covariant derivatives!

Def["]: Given X, Y E X(S), define the covariant derivative of ^Y along ^X as

$$
\nabla_{\mathbf{x}} Y := (D_{\mathbf{x}} Y)^T
$$

where $\begin{pmatrix} 0 & 0 \end{pmatrix}^T$ refers to the tangential component of a vector based at p ^E ^S according to the orthogonal splitting

$$
\left(\begin{array}{c}\text{depends} \\ \text{on } P\end{array}\right) \begin{array}{c}\n\left(\mathbb{R}^3 = \int_{P} \mathbb{R}^3 = T_p S \oplus (T_p S)^+\\ \text{or} \\ V = V^T + V^{\perp}\n\end{array}\right) \quad (*)
$$

 $Remarks: (1)$ Recall that $D_xY(p)$ depends $OMLY$ on (a) the vector X_p and (b) the values of Y restricted to ANY curve $\alpha: (-\varepsilon, \varepsilon) \to \mathbb{R}^3$ st. $\alpha(\circ) = \rho$, $\alpha'(\circ) = X_p$

(2) $X, Y \in \mathfrak{X}(S) \implies \nabla_X Y \in \mathfrak{X}(S)$

We now study some important properties of ∇ .

Properties of
$$
\nabla
$$
: Let X, Y, Z & \times (S), $f \in C^{\infty}(S)$,
a, *b* are real constants.

¹ Linearity in both variables

$$
\nabla_{\mathbf{x}} (a \mathbf{Y} + b \mathbf{Z}) = a \nabla_{\mathbf{x}} \mathbf{Y} + b \nabla_{\mathbf{x}} \mathbf{Z}
$$

$$
\nabla_{\mathbf{a} \mathbf{X} + b \mathbf{Y}} \mathbf{Z} = a \nabla_{\mathbf{x}} \mathbf{Z} + b \nabla_{\mathbf{Y}} \mathbf{Z}
$$

- (2) Liebniz rule: $\nabla_{\mathbf{x}} (fY) = X(f) Y + f \nabla_{\mathbf{x}} Y$
- (3) Tensorial: $\nabla_{fX} Y = f \nabla_{x} Y$
- (4) Torsion free: $\boxed{\nabla_{\mathbf{x}}\Upsilon \nabla_{\Upsilon}\times = \begin{bmatrix} X,Y \end{bmatrix} }$
- 5 Metric compatibility

$$
\mathsf{X} \langle \mathsf{Y}, \mathsf{Z} \rangle = \langle \nabla_{\mathsf{x}} \mathsf{Y}, \mathsf{Z} \rangle + \langle \mathsf{X}, \nabla_{\mathsf{x}} \mathsf{Z} \rangle
$$

Remark: The covariant derivative

 $\nabla : \mathfrak{X}(\mathsf{S}) \times \mathfrak{X}(\mathsf{S}) \longrightarrow \mathfrak{X}(\mathsf{S})$ X , Y $\longmapsto \nabla_{X}Y$

is uniquely defined by properties $(1) - (5)$ above! Fundamental Theorem of Riemannian geometry

 $Proof:$ It follows from the fact that $(1) - (5)$ are satisfied with " ∇ " replaced by "D" for vector fields in \mathbb{R}^3 . $E.g.$ To prove (5) , X < Y, Z > = < D_xY , Z > + < Y, D_xZ > $(since Y, Z \in X(S)) = \langle (D_x Y)^T, Z > + \langle Y, (D_x Z)^T \rangle$
 $\frac{1}{\sqrt{x}}$

 \overline{a}

Einstein summation convention

- . 2 kinds of indices: upper & lower
- . Same index appearing BOTH as an upper & lower index in the same term \implies Sum over this index

E.g.: coordinates in
$$
\mathbb{R}^n
$$
: x^1 , x^2 , ..., x^n (upper)
\nCorotinate vector fields in \mathbb{R}^n : $\frac{\partial}{\partial x}$, ..., $\frac{\partial}{\partial x^n}$ (lower)
\nVector fields in \mathbb{R}^n : $X = \sum_{i=1}^n a^i \frac{\partial}{\partial x^i} = a^i \frac{\partial}{\partial x^i}$
\nEig. $X(u^1, u^2) : u \rightarrow S \subseteq \mathbb{R}^3$ parametrization
\nfunction
\n $Write \overline{Q_i := \frac{\partial X}{\partial u^i}}$ coordinate vectors fields
\nAny tangential vector field $X \in \mathcal{X}(S)$ can be locally

Express a expression of the expression:

\n
$$
X = a^{i} \partial_{i} = a^{k} \partial_{k}
$$
\n
$$
Y = a^{i} \partial_{i} = a^{k} \partial_{k}
$$
\n
$$
\frac{1}{2^{i+1} + 1} = a^{i} \partial_{i} = a^{i} \partial_{k}
$$
\n
$$
\frac{1}{2^{i+1} + 1} = a^{i} \partial_{i} = a^{i} \partial_{i} = a^{i} \partial_{k}
$$
\n
$$
\frac{1}{2^{i+1} + 1} = a^{i} \partial_{i} = a^{i} \partial_{i} = a^{i} \partial_{k}
$$
\n
$$
\frac{1}{2^{i+1} + 1} = a^{i} \partial_{i} = a^{i} \partial_{i} = a^{i} \partial_{k}
$$
\n
$$
\frac{1}{2^{i+1} + 1} = a^{i} \partial_{i} = a^{i} \partial_{k}
$$
\n
$$
\frac{1}{2^{i+1} + 1} = a^{i} \partial_{i} = a^{i} \partial_{k}
$$

Christoffel Symbols

Given a parametrization $\Sigma(u',u^2)$ on S

tangent vectors:
$$
\partial_1 = \frac{\partial \overline{X}}{\partial u_1}
$$
, $\partial_2 = \frac{\partial \overline{X}}{\partial u_2}$
unit normal: $N = \frac{\partial_1 \times \partial_2}{\|\partial_1 \times \partial_2\|}$

At each point $p \in S$, we have the orthogonal splitting:

We have a 2-parameter family of basis of \mathbb{R}^3 along S :

Similar to a "moving frame", but <u>NOT</u> Orthonormal!

Def": The Christoffel symbols T_{ij}^k of a given coordinate system u', u^2 is defined as

$$
\nabla_{\partial i} \partial_j = T_{ij}^k \partial_k
$$

 $\frac{\rho_{\text{rop}}}{\rho}$: (1) $\frac{\Gamma_{ij}^k}{\Gamma_{ij}^k} = \frac{\Gamma_{ji}^k}{\Gamma_{ji}^k}$ (symmetry)

$$
(2)
$$
 $\boxed{T_{ij}^k = \frac{1}{2} g^{kl} (3; 3_{lj} + 3_{j} 3_{il} - 3_{l} 3_{ij})}$ Koszul
Formula

Proof: (1) Since V is torsion-free, i.e.

$$
\frac{\nabla_{\partial_i} \partial_j - \nabla_{\partial_j} \partial_i}{\nabla_{\partial_i} \partial_j - \nabla_{\partial_j} \partial_i} = [3i, 3j] = 0
$$

(2) Since ∇ is metric compatible,

 $X < Y, Z > 3 = \langle \nabla_{X} Y, Z > + \langle Y, \nabla_{X} Z \rangle$

for any tangential Vector fields X, Y, Z & X(S)

In particular, if we choose $X = 3$. $Y = 3$: $Z = 3$ \Rightarrow $\partial_{\ell} \vartheta_{ij} = \langle \Gamma_{\ell i}^{k} \vartheta_{k}, \vartheta_{j} \rangle + \langle \vartheta_{i}, \Gamma_{\ell j}^{k} \vartheta_{k}$ = $\int_{a_i}^{b} \theta_{kj} + \int_{a_j}^{b} \theta_{ik}$ Cyclicly permuting i , j , l , we obtain using (i) $\partial_{\ell} g_{ij} = \int_{\ell}^{k} g_{kj} + \int_{\ell}^{k} g_{ik}$ T_{ij}^k $\vartheta_{k\ell}$ + $T_{j\ell}^k$ $3i$ je $=$ $1i$ j dre $+$ $1i$ egje $\int_{\mathbf{j}}^{\mathbf{k}} \mathcal{G}_{\mathbf{k}}$ + $\int_{\mathbf{j}}^{\mathbf{k}}$ J_j Sei = J_{jk} Ji J_{jk} + J_{jj} J_{kk} $\partial_i \partial_{ij} + \partial_j \partial_{ik} - \partial_k \partial_{ij} = 2 \partial_{kk} T_{ij}^k$ Multiplying by 9^{me} on both sides G^{m2} $(\partial_i \partial_{ij} + \partial_j \partial_{i\ell} - \partial_{\ell} \partial_{ij}) = 2 \frac{\partial^{m2} \partial_{\kappa\ell}}{\partial_{ij} - \Gamma_{ij}^k} = 2 \frac{\Gamma_{ij}^m}{\Gamma_{ij}^m}$ \mathbf{u} \sum_{k} Dividing 2 on both sides and switch **m** to k gives

the desired formula.

 $-$ 0